2011/06/08

Constraint qualification

Karush–Kuhn–Tucker conditions

In mathematics, the Karush–Kuhn–Tucker conditions (also known as the Kuhn–Tucker or KKT conditions) are necessary for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

We consider the following nonlinear optimization problem:

 \text{Minimize }\; f(x)
 \text{subject to: }\
 g_i(x) \le 0 , h_j(x) = 0

where f( \cdot ) is the function to be minimized, where g_i (\cdot)\ (i = 1, \ldots,m) are the functions of the inequality constraints and h_j (\cdot)\ (j = 1,\ldots,l) are the functions of the equality constraints, and where m and l are the number of inequality and equality constraints, respectively.

Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which have allowed only equality constraints. The KKT conditions were originally named after Harold W. Kuhn, and Albert W. Tucker, who first published the conditions. Later scholars discovered that the necessary conditions for this problem had been stated by William Karush in his master's thesis.

Necessary conditions

Suppose that the objective function, i.e., the function to be minimized, is f : \mathbb{R}^n \rightarrow \mathbb{R} and the constraint functions are g_i : \,\!\mathbb{R}^n \rightarrow \mathbb{R} and h_j : \,\!\mathbb{R}^n \rightarrow \mathbb{R}. Further, suppose they are continuously differentiable at a point x . If x is a local minimum that satisfies some regularity conditions, then there exist constants \mu_i\ (i = 1,\ldots,m) and \lambda_j\ (j = 1,\ldots,l), called KKT multipliers, such that

Stationarity
\nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{j=1}^l \lambda_j \nabla h_j(x^*) = 0,
Primal feasibility
g_i(x^*) \le 0, \mbox{ for all } i = 1, \ldots, m
h_j(x^*) = 0, \mbox{ for all } j = 1, \ldots, l \,\!
Dual feasibility
\mu_i \ge 0, \mbox{ for all } i = 1, \ldots, m
Complementary slackness
\mu_i g_i (x^*) = 0, \mbox{for all}\; i = 1,\ldots,m.

In a particular case m = 0, i.e., without inequality constraints, these KKT conditions turn into Lagrange conditions, and the KKT multipliers are called Lagrange multipliers.

Regularity conditions (or constraint qualifications)

In order for a minimum point x to satisfy the above KKT conditions, it should satisfy some regularity condition, the most used ones are listed below:

(v_1,\ldots,v_n) is positive-linear dependent if there exists a_1\geq 0,\ldots,a_n\geq 0 not all zero such that a_1v_1+\ldots+a_nv_n=0.

It can be shown that LICQ⇒MFCQ⇒CPLD⇒QNCQ, LICQ⇒CRCQ⇒CPLD⇒QNCQ (and the converses are not true), although MFCQ is not equivalent to CRCQ . In practice weaker constraint qualifications are preferred since they provide stronger optimality conditions.

Sufficient conditions

In some cases, the necessary conditions are also sufficient for optimality. In general, the necessary conditions are not sufficient for optimality and additional information is necessary, such as the Second Order Sufficient Conditions (SOSC). For smooth functions, SOSC involve the second derivatives, which explains its name.

The necessary conditions are sufficient for optimality if the objective function f and the inequality constraints gj are continuously differentiable convex functions and the equality constraints hi are affine functions.

It was shown by Martin in 1985 that the broader class of functions in which KKT conditions guarantees global optimality are the so called invex functions. So if equality constraints are affine functions, inequality constraints and the objective function are continuously differentiable invex functions then KKT conditions are sufficient for global optimality.

Value function

If we reconsider the optimization problem as a maximization problem with constant inequality constraints,

 \text{Maximize }\; f(x)
 \text{subject to: }\
 g_i(x) \le a_i , h_j(x) = 0.

The value function is defined as:

V(a_1, \ldots a_n) = \sup\limits_x f(x)
 \text{subject to: }\
 g_i(x) \le a_i , h_j(x) = 0
 j\in\{1,\ldots l\}, i\in\{1,\ldots,m\}.

(So the domain of V is \{a \in \mathbb{R}^m | \text{for some }x\in X, g_i(x) \leq a_i, i \in \{1,\ldots,m\}.)

Given this definition, each coefficient, μi, is the rate at which the value function increases as ai increases. Thus if each ai is interpreted as a resource constraint, the coefficients tell you how much increasing a resource will increase the optimum value of our function f. This interpretation is especially important in economics and is used, for instance, in utility maximization problems.

Generalizations

With an extra constant multiplier μ0, which may be zero, in front of \nabla f(x^*) the KKT stationarity conditions turn into

\mu_0 \nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{j=1}^l \lambda_j \nabla h_j(x^*) = 0,

which are called the Fritz John conditions.

The KKT conditions belong to a wider class of the First Order Necessary Conditions (FONC), which allow for non-smooth functions using subderivative.

References

  1. Kuhn, H. W.; Tucker, A. W. (1951). "Nonlinear programming". Proceedings of 2nd Berkeley Symposium. Berkeley: University of California Press. pp. 481–492. http://projecteuclid.org/euclid.bsmsp/1200500249. MR47303
  2. W. Karush (1939). Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois.
  3. Kjeldsen, Tinne Hoff. "A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear programming: the impact of World War II". Historia Math. 27 (2000), no. 4, 331–361. MR1800317
  4. Rodrigo Eustaquio, Elizabeth Karas, and Ademir Ribeiro. Constraint Qualification for Nonlinear Programming. Technical Report Federal University of Parana.
  5. Martin, D. H. (1985). "The essence of invexity". J. Optim. Theory Appl., 47. pp. 65–76.

See also

Further reading






Retrieved from : http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_.28or_constraint_qualifications.29

No comments:

Post a Comment